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The task of designing the geometry of a set of current-carrying coils that produce the magnetic
field required to confine a given plasma equilibrium is expressed as a minimization principle, namely
that the coils minimize a suitably defined error expressed as a surface integral, which is recognized
as the quadratic-flux. A penalty on the coil length is included to avoid pathological solutions.

A simple expression for how the quadratic-flux and length vary as the coil geometry varies is
derived, and an expression describing how this varies with variations in the surface geometry is
derived. These expressions allow efficient coil-design algorithms to be implemented, and also enable
efficient algorithms for varying the surface in order to simplify the coil geometry.

I. INTRODUCTION11

The conventional approach [1] to designing stellarators12

[2] is to first determine the desired plasma state via an13

equilibrium optimization, and then to determine the ge-14

ometry of a number of closed, current-carrying “coils”15

that produce the required vacuum field. Together with16

the field produced by plasma currents that accompany17

finite-pressure plasmas, the vacuum field must create the18

“magnetic bottle” that confines the plasma.19

Stellarators have the particular advantage that the20

magnetic bottle is primarily produced by the externally21

applied field, and there is not much that plasmas can do22

to “break” the bottle. To use more formal terminology,23

most macroscopic instabilities are benign. Stellarators24

traditionally, however, have had the disadvantage that25

the necessarily complicated, so-called three-dimensional26

geometry means that there are additional “hills” in the27

magnetic field strength along the magnetic fieldlines, be-28

tween which charged particles bounce back and forth29

leading to enhanced losses. There are, however, encour-30

aging recent developments that suggest that these losses31

can be minimized (see the recent overview by Gates et32

al. [3] and references therein). This paper addresses how33

to design coils that confine a given equilibrium, and how34

changing the shape of the equilibrium will change the35

shape of the coils.36

We first, in Sec. II, consider the problem of designing37

the coils for a given “target” equilibrium. The coils must38

produce the required magnetic field inside some toroidal39

volume, V, that encompasses the plasma domain.40

In Sec. III we consider how the shape of the optimal41

coils change as the target surface changes. This is accom-42

plished by the calculus of variations of surface integrals.43

The magnetic field produced by the plasma in equilib-44

rium with a given boundary will change as the bound-45

ary changes, but herein we restrict attention to vacuum46

fields.47

Finally, recognizing the growing, practical realization48

that designing plasmas and designing coils are not really49

separate problems but must be considered together, in50

Sec. IV, we describe an constrained optimization princi-51

ple that simplifies a measure of coil complexity under the52

constraint of conserved plasma properties.53

II. THE PROBLEM OF COIL DESIGN54

Laplace showed that vacuum fields in a given V, with55

boundary S ≡ ∂V, are unique if appropriate boundary56

conditions are provided. We choose a Neumann bound-57

ary condition: we require a set of coils that produces a58

given normal magnetic field, BT
n ≡ BT ·n, on x̄(θ, ζ) ≡ S,59

where θ and ζ parameterize position on the surface. This60

must satisfy
∮

S
BT · ds = 0 for the net flux of fieldlines61

to be consistent with a divergence-free field.62

For brevity, herein we primarily restrict attention to63

the case that BT
n = 0. It is straightforward to gener-64

alize the following to accommodate arbitrary BT
n . The65

unique solution for the vacuum field must also be con-66

strained by a loop integral, e.g. the enclosed toroidal67

flux, Ψ ≡
∮

L
A · dl, where L is a “poloidal loop”.68

Let xi(l) represent the geometry of a set of i =69

1, . . . , NC closed one-dimensional curves, hereafter called70

“coils”, which are parameterized by l, each carrying cur-71

rent Ii. Herein we shall treat the number of coils, NC , as72

being fixed, but generally NC is a degree-of-freedom. No73

constraints are imposed on the coil geometry, other than74

requiring that each coil be closed, x(l + 2π) = x(l). The75

magnetic field is given by the Biot-Savart law,76

Bi(x̄) = Ii

∮

i

x′

i × r/r3 dl, (1)

where r(θ, ζ, l) ≡ x̄(θ, ζ) − xi(l), and the prime denotes77

differentiation with respect to l.78
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With a finite number of finite-length coils, we cannot79

generally expect to obtain a coil set that exactly produces80

the required field. So, we must seek instead a coil set that81

minimizes a suitably defined error.82

In 1987, Merkel [4] presented a method that deter-83

mined the continuous current potential on a prescribed84

“winding” surface lying outside the plasma that mini-85

mized the squared normal field; thirty years later Lan-86

dreman [5] regularized this method. Drawing upon these87

ideas, the minimally constrained solution [6] for the coil88

geometry minimizes the functional89

F (xi, x̄) ≡
1

2

∮

S

B2

n ds + ωL. (2)

The first term is called [7] the quadratic flux, ϕ2. A90

penalty on the total length of the coils, L ≡
∑

i

∮

|x′
i| dl,91

is included, and ω is a user-supplied “weight”.92

More elaborate functionals can be introduced that93

recognize that some distributions, Bn
mn, of the normal94

field on the boundary are more important than oth-95

ers, namely those that resonate with internal rational96

rotational-transform surfaces and thereby create mag-97

netic islands, or that resonate with plasma oscillations.98

The particularly important distributions should be suit-99

ably weighted in the minimization, achieved by replacing100

ϕ2 with
∮

ωmn|B
n
mn| ds, for example.101

The penalty on the length is a regularization term. In102

the limit that ω → 0 the minimization problem is ill-103

posed and the coils can become infinitely long. As ω is104

increased, the extremizing coils become shorter, and ϕ2105

will typically increase. Including additional constraints106

or penalties in F , e.g. penalizing the inter-coil electro-107

magnetic forces that increase the cost of the support108

structures, will also typically serve to compromise the109

minimization of ϕ2.110

Upon varying the i-th current, the first variation in F111

is112

δF = δIi
∂F

∂Ii
(3)

where113

∂F

∂Ii
=

∮

i

∮

S

Bn x′

i × r · n/r3 ds dl. (4)

Generally [6], a constraint on the toroidal flux must be114

included in F to avoid the trivial solution that all the coil115

currents are zero, Ii = 0. In this paper this solution is116

avoided by setting each Ii = 1. This has some practical117

advantage, as it means that the coils can be energized in118

series.119

Upon varying the geometry of the i-th coil, the first120

variation in the magnetic field is121

δB(x̄) =

∮

i

(δxi × x′

i) · Ri dl, (5)

where R = 3 r r/r5 − I/r3, where I is the “idemfactor”,122

e.g., I = i i + j j + kk, which has the property that123

v · I = v and I · v = v for all vectors v. We have used124

r× [r × (δx × x′)] = (r× δx) (r · x′)− (r× x′) (r · δx) to125

obtain an expression that explicity shows that variations126

tangential to the curve, which do not alter the geometry127

of the coils, do not alter the magnetic field. The first128

variation in F is129

δF =

∮

i

δxi ·
δF

δxi
dl, (6)

where130

δF

δxi
≡ x′

i ×

(
∮

S

Ri,n Bn ds + ω κi

)

, (7)

and κ is the coil curvature, κ ≡ x′ × x′′/|x′|3.131

A local minimum may be found from an initial guess132

by integrating ∂xi/∂τ = −δF/δxi, where τ is an arbi-133

trary integration parameter. This “descent” algorithm is134

certainly not the fastest; but, because the coils are con-135

tinuously deformed, the coils cannot pass through the136

surface without producing infinities in F , and therefore137

the Gauss linking number of the coils with respect to the138

plasma,139

1

4π

∮

i

∮

a

xi − xa

|xi − xa|3
· dxi × dxa, (8)

is conserved, where xa is the magnetic axis, for example.140

The trivial solution that the coils become arbitrarily far141

removed is avoided if the initial geometry of the coils142

is suitably linked. (This article shall not address the143

problems associated with finding global minima.)144

Coils that link N times, where N is an integer greater145

than 1, are commonly called “helical”, and if N = 1 the146

coils are called “modular”. Coils that do not link the147

plasma may provide a vertical field; or if they are used148

for fine-tuning plasma performance they are called “trim149

coils”, or “saddle coils”, or “resonant magnetic perturba-150

tion coils”. If the plasma itself has a non-trivial knotted-151

ness [8], different linking arrangements are possible, but152

this is as-yet largely unexplored. The theoretical and nu-153

merical methods described in this paper are applicable154

to any type of coil.155

A Newton method may be used to find extremizing156

coils. The second variation in F resulting from variations157

in the coil geometry are, for j 6= i, given by158

δ2F =

∮

i

∮

j

δxi ·
δ2F

δxiδxj
· δxj dli dlj , (9)

where159

δ2F

δxiδxj
=

∮

S

(x′

i × Ri,n) (x′

j × Rj,n) ds. (10)

For j = i, the expression is more complicated and not160

particularly insightful. The algebra becomes concise if we161

write xi(l) ≡
∑

k xi,k ϕk(l), where the ϕk comprise set of162

basis functions; e.g., ϕ1 = i, ϕ2 = j, ϕ3 = k, ϕ4 = cos(l)i,163

ϕ4 = cos(l)j, and so on; and the xi,k are the indepen-164

dent degrees of freedom that describe the geometry of165

the coils. Then, F = F (c, s), where c ≡ {xi,k}, and166

s ≡ {x̄k} represents a similar parameterization of the167

surface. The variation in F resulting from variations in168

the coil geometry is169

F (c + δc, s) ≈ F (c, s) + ∇cF · δc +
1

2
δcT · ∇2

cc
F · δc.
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Newton iterations proceed by inverting the Hessian,170

δc = −∇2

cc
F (c, s)−1 · ∇cF (c, s). This approach has been171

implemented [9] in the recently developed FOCUS code [6]172

A suitably constrained equal-arc parameterization, for173

example, will eliminate the purely “numerical” nullspace174

of the Hessian associated with tangential variations. An175

eigenvalue analysis of the Hessian determines sensitivity176

to coil misplacement errors [10], and this determines the177

construction tolerances. Bifurcations in the coil geome-178

try are particularly interesting and are associated with179

zero eigenvalues. Hereafter, we consider that the coil ge-180

ometry is a function of the boundary, i.e., xi = xi(x̄).181

III. VARIATIONS IN THE SURFACE182

Imagine that the coil geometry that minimizes F for a183

given surface has been found and consider a variation, δx̄,184

in the geometry of the surface. A variation in the coil ge-185

ometry is generally required if the condition δF/δxi = 0186

is to be preserved. The variation in F resulting from187

variations, δxi and δx̄, in the geometry of the i-th coil188

and the surface is189

δ2F =

∮

i

δxi ·

∮

S

δ2F

δxiδx̄
· δx̄ ds dl, (11)

where190

δ2F

δxiδx̄
≡ x′

i×(RS · ∇Bn+BS · ∇Rn+BnR · H)n, (12)

where BS ≡ B − Bnn is the projection of B in the tan-191

gent plane to x̄, and similarly for RS ≡ R − Rnn. The192

mean curvature can be written H ≡ −n (∇ · n). In de-193

riving Eqn. 12, we have followed the mathematical for-194

malism for variations in surface integrals such as the195

quadratic flux with respect to surface variations de-196

scribed by Dewar et al. [7], and we have used ∇x̄ · R = 0.197

Only variations in the boundary that are normal to198

the boundary are relevant, and only derivatives that are199

tangential to the surface appear. The latter are most200

conveniently computed using the tangential dual space201

to eθ and eζ given by ∇θ ≡ eζ × n/(n · eθ × eζ) and202

∇ζ ≡ n × eθ/(n · eθ × eζ), and the tangential directional203

derivative is BS ·∇ = B ·∇θ ∂θ +B ·∇ζ ∂ζ , and similarly204

for RS · ∇.205

The initial direction in which the coils will change un-206

der the descent algorithm is given by207

∂xi

∂τ
= −

∮

S

δ2F

δxiδx̄
· δx̄ ds. (13)

To determine the true change in the coil geometry, how-208

ever, it is required to invert the Hessian matrix. The con-209

dition that δF/δxi remains zero as the surface changes210

is211

δc = −∇2

cc
F−1 · ∇2

cs
F · δs = 0. (14)

Similar expressions that describe how the coils change212

with changes in the length penalty, ω, can be derived.213

These mixed second variations with respect to the214

coil and surface geometry, ∇2

cs
F ∼ δ2F/δxiδx̄ given in215

Eqn. 12, have been implemented in FOCUS.216

The above equations, Eqn. 6 and Eqn. 12, have re-217

vealed the role played by the curvature of the coils and218

the mean curvature of the surface, κ and H.219

IV. VARYING BOUNDARY TO SIMPLIFY220

COILS221

Turning now to the topic of combined plasma-coil de-222

sign, we note that most properties of the plasma depend223

on the magnetohydrodynamic (MHD) equilibrium. The224

equilibrium depends on the geometry of the boundary,225

S, the normal field on the boundary, and two “profile”226

functions usually taken as the pressure and rotational-227

transform (or parallel current-density) as functions of the228

enclosed toroidal flux. For brevity, this paper will ignore229

the dependence on the profiles and assume that all prop-230

erties of the plasma depend on the boundary.231

The “optimized stellarator” design algorithm splits the232

problem of stellarator design into two steps: first, iden-233

tify via iterations the boundary that yields the desired234

equilibrium; and second, determine the geometry of the235

coils that provide the required field. This two-step ap-236

proach was used to design W7-X, which was successfully237

built [11] and is now operating [12] at the Max-Planck-238

Institut für Plasmaphysik in Griefswald, Germany. This239

approach was also used to design NCSX [13], which was240

built (but not assembled) at Princeton Plasma Physics241

Laboratory, USA.242

Because of the ill-posed nature of coil design, a small243

change in the plasma boundary may require an unfor-244

tunately large change in the coil geometry; a possibly245

trivial improvement in the plasma performance may re-246

sult in an incommensurate increase in the construction247

cost. Simple, easy-to-build and inexpensive coil sets are248

preferable whenever possible, and engineering properties249

should be more intimately brought into the fold of the250

design process. We can imagine algorithms that simul-251

taneously optimize the plasma performance and simplify252

the coil geometry. We present one example of such an253

optimization algorithm.254

We introduce a measure of the “coil complexity”,255

C(xi). Preferably, this should reflect the financial cost256

of building a given set of coils to the required tolerances.257

This article shall consider the total integrated torsion of258

the coils,259

C(xi) =
∑

i

∮

i

x′
i · x

′′
i × x′′′

i

|x′
i × x′′

i |
2

dl, (15)

which measures how “non-planar” the coils are. W7-260

X has proved-by-construction that it is possible to con-261

struct stellarators with non-planar coils, but it is fair to262

say that planar coils are simpler to build than non-planar263

coils (furthermore, convex coils, which can be wound un-264

der tension, are easier to build than non-convex coils).265

The following mathematical description is valid for any266

differentiable coil complexity function, e.g. the strength267

of the inter-coil electromagnetic forces.268

Let P(x̄) represent the “properties” of the plasma that269

are important. The following mathematical description270

is valid for any property that is a differentiable function271
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of the plasma boundary. We seek to minimize C subject272

to the constraint that P = P0, and so we seek extrema273

of274

G(x̄) ≡ C(xi(x̄)) + λ [P(x̄) − P0] , (16)

where λ is a Lagrange multiplier. Solutions satisfy275

∂xi

∂x̄
·

∂C

∂xi
+ λ

∂P

∂x̄
= 0. (17)

For an illustration, the property that we wish to con-276

strain is the rotational-transform on the magnetic axis.277

It has long been known [14, 15] that rotational-transform278

in vacuum fields can be produced either by the “rotating279

ellipticitiness” of the boundary or by the integrated tor-280

sion of the magnetic axis, or both. In the small aspect281

ratio limit, the rotational-transform is given by282

ι- =???, (18)

and contours of ι- are shown as the dotted lines in Fig. 1.283

For an illustration and exercise, we construct a two-

FIG. 1: Contours

284

parameter family of vacuum fields parameterized by tor-285

sion and ellipticity as follows.286

The Fundamental Theory of Curves shows that one-287

dimensional curves, x(ζ), embedded in three-dimensional288

space are characterized by their torsion, τ(ζ) ≡ x′ · x′′ ×289

x′′′/|x′ ×x′′|2, and curvature, κ(ζ) ≡ |x′ ×x′′|/|x′|3. We290

construct a curve, xa(ζ), that will serve as a proxy mag-291

netic axis with prescribed integrated torsion and mini-292

mum integrated curvature squared by seeking extrema293

of294

F ≡

∫

κ2 dζ + µ

(
∫

τ dζ − τ0

)

, (19)

where µ is a Lagrange multiplier. Additional constraints295

are included to constrain the parameterization so that296

|x′(ζ)| = 1 and to constrain the curve with respect to297

rigid shifts and rotations.298

A two dimensional surface, x̄(θ, ζ), defined by a rotat-299

ing ellipse in the plane perpendicular to x′
a is300

x̄ = xa(ζ) + ρ
(

ǫ1/2 cos θ v1 + ǫ−1/2 sin θ v2

)

, (20)

where301

(

v1

v2

)

=

(

cos α, sinα
− sin α, cos α

)(

n

b

)

(21)

where302

α(ζ) =
Nζ

2
+ ζ0 −

∫ ζ

0

τ(ζ̄) d̄ζ, (22)

and n(ζ) and b(ζ) are the normal and binormal. Choos-303

ing N = −1, so that the ellipse makes a half rotation304

every 2π in ζ and that this increases rather than de-305

creases the rotational-transform, and choosing ζ0 = 0306

and ρ = 0.2, the family of surfaces is parameterized by307

τ0 and ǫ.308

For each target surface we construct a set of coils us-309

ing FOCUS. To check our calculation, we compute the310

rotational-transform of the true magnetic axis, which is311

located by fieldline following methods, and this is shown312

in Fig. 1. There is a small discrepancy between the value313

so obtained and that predicted by Eqn. 18 because the314

true magnetic axis will not exactly coincide with the315

proxy magnetic axis for non-zero ρ, and we have con-316

firmed that the discrepancy approaches zero as ρ → 0.317

There is ample opportunity to vary the shape of the318

boundary at fixed transform on axis, and so we may in-319

vestigate whether this freedom can be exploited to sim-320

plify the coil complexity, and how shaping the boundary321

to produce transform shapes the coils. Shown in Fig. 2322

is a configuration with ι-0 = 0.859 and ǫ = 2.00, and in323

Fig. 3 one with ι-0 = 1.600 and ǫ = 0.73. Both have324

18 coils, and for each the weight-penalty is ω = 20, the325

enclosed volume is equal to 0.799m3 and the rotational-326

transform on axis is 0.276 The average length and in-327

tegrated torsion of the coils is 3.07m and 0.66m−1 for328

the first case, and 2.88m and 0.12m−1 for the second.329

Poincaré plots (not shown) confirm that the coils pro-330

duce the required magnetic field.331

We finish this article with a comment regarding the332

∂P/∂x̄ term in Eqn. 17. This should really be expressed333

∂P

∂x̄
=

∂B

∂x̄
·
∂P

∂B
, (23)

where the plasma property is assumed to be a differ-334

entiable function of the equilibrium magnetic field, B,335

which is expressed as a function of the boundary, x̄. One336

may argue that only properties that are differentiable337

functions of the equilibrium should be be included, as338

extrema are defined by setting the dervative to zero.339

We also require an MHD equilibrium model that yields340

solutions that are differentiable functions of the bound-341

ary; and ideal-MHD equilibria with rational rotational-342

transform surfaces are not. Rosenbluth et al. [16] de-343

scribed how discontinuities in the first-order ideal-MHD344
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FIG. 2: Rotating elliptical boundary with a circular magnetic
axis. The color shows the mean curvature, from |H| = 0
(blue) to |H| = 15 (red).

FIG. 3: Circular cross-section boundary centered on an axis
with torsion. The color scale is the same as in Fig. 2, and for
this case |H| varies between 2.3 and 6.3.

displacements near rational surfaces destroy analyticity.345

Stepped-pressure equilibria [17] are analytic functions346

of the boundary, as are stepped-transform [18] equilib-347

ria, as are mixed ideal-relaxed equilibria [19]. The re-348

quired derivatives, namely ∂B/∂x̄, have already been349

implemented in the Stepped Pressure Equilibrium Code350

(SPEC) [20].351

A final comment: given that we have free-boundary352

MHD equilibrium codes, we can perform free-boundary353

optimizations, for which the independent degrees of free-354

dom in the optimization describe the geometry of the355

coils; and thereby penalties on the coil complexity can si-356

multaneously be computed and optimized alongside mea-357

sures of plasma performance. The analytical expressions358

presented herein can be used to enhance the numerical359

efficiency and accuracy of these algorithms.360
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